منابع مشابه
Graph Coloring with Adaptive Evolutionary Algorithms
This paper presents the results of an experimental investigation on solving graph coloring problems with Evolutionary Algorithms (EAs). After testing different algorithm variants we conclude that the best option is an asexual EA using order-based representation and an adaptation mechanism that periodically changes the fitness function during the evolution. This adaptive EA is general, using no ...
متن کاملInteractive Random Graph Generation with Evolutionary Algorithms
This paper introduces an interactive system called GraphCuisine that lets users steer an Evolutionary Algorithm (EA) to create random graphs that match user-specified measures. Generating random graphs with particular characteristics is crucial for evaluating graph algorithms, layouts and visualization techniques. Current random graph generators provide limited control of the final characterist...
متن کاملHybrid Evolutionary Algorithms for Graph Coloring
A recent and very promising approach for combinatorial optimization is to embed local search into the framework of evolutionary algorithms. In this paper, we present such hybrid algorithms for the graph coloring problem. These algorithms combine a new class of highly specialized crossover operators and a well-known tabu search algorithm. Experiments of such a hybrid algorithm are carried out on...
متن کاملEfficient Data Mining with Evolutionary Algorithms for Cloud Computing Application
With the rapid development of the internet, the amount of information and data which are produced, are extremely massive. Hence, client will be confused with huge amount of data, and it is difficult to understand which ones are useful. Data mining can overcome this problem. While data mining is using on cloud computing, it is reducing time of processing, energy usage and costs. As the speed of ...
متن کاملThe ensemble clustering with maximize diversity using evolutionary optimization algorithms
Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Japan Society for Fuzzy Theory and Intelligent Informatics
سال: 2017
ISSN: 1347-7986,1881-7203
DOI: 10.3156/jsoft.29.1_14